Woochan’s work on Graphene bolometer is published in Nature.
Ultrasensitive Microwave Detector Developed
A joint international research team from POSTECH of South Korea, Raytheon BBN Technologies, Harvard University, and Massachusetts Institute of Technology in the U.S., Barcelona Institute of Science and Technology in Spain, and the National Institute for Materials Science in Japan have together developed ultrasensitive sensors that can detect microwaves with the highest theoretically possible sensitivity. The research findings, published in the prominent international academic journal Nature on October 1, are drawing attention as an enabling technology for commercializing the next-generation of technologies including quantum computers.
Microwave is used in a wide range of scientific and technological fields, including mobile communications, radar, and astronomy. Recently, research has been actively conducted to detect microwaves at extremely high sensitivity for the next-generation quantum technologies such as quantum computing and quantum communication.
Currently, microwave power can be detected using a device called bolometer. A bolometer usually consists of three materials: Electromagnetic absorption material, a material that converts electromagnetic waves into heat, and a material that converts the generated heat into electrical resistance. The bolometer calculates the amount of electromagnetic waves absorbed using the changes in the electrical resistance. Using the semiconductor-based diodes such as silicon and gallium arsenide in the bolometer, the sensitivity of the state-of-the-art commercial bolometer operating at room temperature is limited at 1 nanowatt (1 billionth of a watt) by averaging for a second.
The research team broke through this limit by innovating the aspect of materials and structure of the device. Firstly, the team used graphene as the material for absorbing electromagnetic waves. Graphene is made up of one layer of carbon atoms and has a very small electronic heat capacity. The small heat capacity signifies that even if little energy is absorbed, it causes a big temperature change. Microwave photons have very little energy, but if absorbed by graphene, they can cause considerable temperature rise. The problem is that the temperature increase in graphene cools down very quickly, making it difficult to measure the change.
To solve this problem, the research team adopted a device called the Josephson junction. This quantum device, composed of superconductor-graphene-superconductor (SGS), can detect temperature changes within 10 picoseconds (1 trillionth of a second) via an electrical process. This makes it possible to detect the temperature changes in graphene and the resulting electrical resistance.
Combining these key ingredients, researchers reached the noise equivalent power of 1 aW/Hz1/2, which means the device can resolve 1 aW (1 trillionth of a watt) within a second.
“This study is significant in that it has established a scalable technology to enable the next-generation quantum devices,” remarked Professor Gil-Ho Lee of POSTECH, who led the study. He further explained, “This study developed a bolometer technology that measures how many microwave photons are absorbed per unit time. But currently, we are developing a single-photon detection technology that can distinguish each microwave photon.” He concluded, “We expect this technology to maximize the measuring efficiency of quantum computing and drastically reduce the indirect resources to enable large-scale quantum computers that will be of great use. Dr. Kin Chung Fong of Raytheon BBN Technologies commented, “We are seeing an unexpected interest in this study from those researching the origins of the universe in the field of radio astronomy and those studying dark matter in particle physics.” He added, “This is an example of how research on basic science can be applied to various fields.”
Link to the paper: https://www.nature.com/articles/s41586-020-2752-4
이길호 교수 연구팀이 마이크로파를 이론적 한계인 1초안에 1아토와트(100경분의 1와트) 수준으로 검출할 수 있는 초고감도 검출기를 개발했다. 이 연구는 미국 레이시온 비비엔 社, 하버드대학교, 매사추세츠 공과대학교, 스페인 바르셀로나 과학기술연구소, 일본 물질재료연구기구와 공동으로 진행됐다. 연구 결과는 차세대 양자정보기술 상용화를 위한 원천 연구로 인정받아 9월 30일(영국 현지시간) 최상위 국제학술지 ‘네이처(Nature)’에 게재됐다.
□ 소재와 구조 혁신 통해 양자기술 실용화 앞당길 초고감도 마이크로파 검출기 개발
전자기파의 한 종류로 전자레인지에 사용돼 우리에게 익숙한 마이크로파는 이동통신, 레이더, 천문학 등 폭넓은 과학 기술 분야에서 활용되고 있다. 최근에는 양자컴퓨팅, 양자정보통신 등 양자정보기술에도 활용 가능하다고 알려지면서, 마이크로파를 초고감도로 검출하려는 연구가 활발히 진행중이다. 현재 마이크로파 검출기로 사용되는 볼로미터는 마이크로파 흡수 소재, 흡수한 마이크로파를 열로 바꿔주는 소재, 발생한 열을 전기 저항으로 변환하는 소재로 구성되며, 전기적인 저항의 변화를 이용해 흡수된 마이크로파의 크기를 계산한다.
그러나, 볼로미터는 실리콘이나 갈륨비소 등 반도체 소자를 마이크로파 흡수 소재로 사용하기에 검출 한계가 1초간 측정 기준 1나노와트(10억분의 1와트) 수준에 머무는 등 정밀한 크기 측정이 불가능했다.
이길호 교수 연구팀은 볼로미터의 소재와 구조 혁신을 통해 이 한계를 돌파했다. 먼저 마이크로파 흡수 소재로 반도체가 아닌 그래핀을 사용해 마이크로파 흡수율을 높였다. 그리고 두 개의 초전도체 사이에 그래핀을 끼워 넣는 ‘조셉슨 접합 구조’를 도입해 그래핀에서 발생하는 전기 저항 변화를 10피코초(1000억분의 1초)이내로 검출할 수 있게 했다. 그 결과 마이크로파 검출을 이론적 한계인 1초간 측정 기준 1아토와트(100경분의 1와트) 수준으로 높일 수 있었다.
이길호 교수는 “이번 연구는 차세대 양자소자를 실제로 구현하기 위한 기반 기술을 구축했다는데 의미가 있다”며 “이 기술을 통해 양자컴퓨팅 측정효율을 극대화하고 대규모 양자컴퓨터 개발의 단초를 마련할 수 있을 뿐만 아니라 우주배경복사, 암흑물질 등 기초과학 연구에 활용될 것으로 기대한다”고 말했다.
논문 링크: https://www.nature.com/articles/s41586-020-2752-4